
Taming Unaligned Writes in Solid State Disk

SSD is Widely Used Nowadays

Conclusion and Future Work

Major data structure (write buffer modification) code

Experimental Setup

Operation Process of PC-LRU

Abu Zafar Md Nuruzzaman Abir Xuechen Zhang
Washington State University Vancouver

Challenges of Unaligned Writes in SSD 

Solid State Disk (SSD) System Architecture

• Unaligned writes are not aligned with the page 
boundary - the number of unaligned writes 
increases proportional to the increase in flash 
density.

• For architectural nature, performance-sensitive 
applications may generate many unaligned writes 
on SSDs.

• Unaligned writes causes many issues like e.g., chip 
congestion, sub-request blocking, chip load 
imbalance, and write space amplification.

• Problem: How to reduce the effect of unaligned 
writes? Solution: Modifying the write buffer with Partial page 
congestion aware Least Recently Used (PC-LRU) algorithm 

• Partial pages vs Full page

• I/O Request Movement

• Decision regarding Pinsertadjustment

PC-LRU tries to mitigate unaligned write effects by keeping partial pages in buffer 
for longer time so that those can convert into full pages.
Future works:
Implementing in VSSIM emulator and incorporating with Multi-Version FTL to reduce 
extra read-modify-write operations when PC-LRU cannot convert partial pages to 
full pages. 

POSTER ID: 2185

Insert to a fixed position, say 60

v I/O requests enter the top of LRU stack L
and then pushed to the bottom of L,
further dropped out of the write buffer.

v If a full page is not at the bottom and
there are partial pages between the
position of the full page and the
bottom of L, each of the partial pages
should be re-inserted to a new position
Pinsert in the stack.

• The host system issues I/O requests to SSDs at the unit of a sector.
• The RAM buffer in SSDs is used only for write requests.
• FTL writes the data to flash memory after determining the physical 

location of the write requests.
• When FTL receives unaligned overwrite requests, it incurs read-

modify-write operations.

• SSD’s exhibit virtually no access time.
• SSD’s are at least 15 times faster than HDD in terms of 

random I/O operations.
• SSD’s failure rate is 5 -10% less than that of HDD.

v Partial pages refer to partially-filled
pages where some sectors in the page
are not updated and full pages refer to
pages that all sectors in the pages are
to be updated.

v PC-LRU prioritizes the eviction of full
pages over partial pages.

Evaluation 

Underlying Properties of SSD

• SSDs use flash memory as a storage medium.
• Flash memory reads and writes data in the unit of a 

page and erases in the unit of a block.
• SSDs usually perform out-of-place updates.
• SSDs use the FTL (Flash Translation Layer) to support 

hosts to access flash memory via the block interface. Traditional LRU algorithm is being modified with the idea of implementing Pinsert by moving
the tail page of the buffer to
v a fixed position in the buffer
v the head of the buffer

Insert from tail to all the way to head

DRAM 16MB, Trace: MSNFS, Page Size: 8KB DRAM 16MB, Trace: MSNFS, Page Size: 4KB

DRAM 16MB, Trace: MSDTR, Page Size: 8KB DRAM 16MB, Trace: MSDTR, Page Size: 4KB

DRAM 32MB, Trace: MSNFS, Page Size: 8KB DRAM 16MB, Trace: MSNFS, Page Size: 8KB

The timestamp is scaled up for traces by 2x,4x, the result shows that the algorithm also 
works in those cases too. Writing time is reduced by ~10% for each trace, significant 
decrease found when both the page size (more partial page can be found) and DRAM size 
is increasing. Only the write response time is shown as that is our interest of reduction.

Existing Work

• PC-LRU has on average 9-19.5% performance improvements, MCA only reduces 
request latencies by 1.2-2.7%.

• PC-LRU is more aggressive in replacing full pages to reduce the total number of 
requests than MCA.

• MCA only shifts one position in the LRU list to delay the eviction of the partial 
page, whereas PC-LRU can select the Pinsert in two positions. 

SSDSim Simulator Description

Traces used: Block I/O traces
1. Microsoft Network (MSN) File Server trace (MSNFS)
2. MSN Storage metadata server trace (MSCFS) 3. MSN 

Development tool release trace (MSDTR).

variable dram (buffer) size 128KB, 8MB, 16 MB, 32MB

variable page size 2KB, 4KB, 8KB

Aging Condition 40%, 70%

Timestamp Scaling 2x, 4x, 5x

PC-LRU algorithm works well in aged condition, here SSD was aged by 40%, 70% and result 
shows huge improvement by ~20%

Write buffer, the dotted boxes
having 4 sectors are partial pages
and the filled boxes are full pages


