
NVSwap: Latency-Aware Paging using Non-Volatile Main Memory

Yekang Wu Xuechen Zhang

What is a paging system？

❖ In the Linux operating system, paging is designed to extend the main memory capacity using the

space of secondary storage devices.

❖ A secondary storage device is a non-volatile device that holds data until it is deleted or

overwritten, such as a hard disk drive or SSD.

❖ The system selects some pages and swaps them out to the swap space through the time of

memory shortage.

❖ The system swaps in the pages from the swap space to DRAM if these pages were swapped out

before are accessed.

Existing Problem

Observations:

❖ During paging, both of the DB read and update operations may have a long tail latency.

❖ During paging, page-out requests have an extremely long tail latency.

❖ The Linux paging system is not able to enforce latency bounds.

❖ The OS page-in latency has a critical impact on the latency of DB operations at the application level.

Related Work

The New Design: NVSwap

NVSwap: A latency-aware paging mechanism

Four main components: a regular-zone, an NV-zone,

a persistent paging buffer and a shadow mapping

table.

❖ The regular-zone, hosted on block storage devices,

serves paging requests dispatched from a disk

scheduling queue.

❖ The NV-zone and persistent paging buffer, hosted

in NVMM, serve paging requests to enforce the

latency bounds.

❖ The NV-zone consists of NVMM page frames that

can be directly accessed in process address

spaces.

❖ The persistent paging buffer stores swapped-out

pages from latency-sensitive processes and

prefetched pages from the regular-zone.

❖ NVSwap asynchronously flushes pages to the

regular-zone in background when the buffer is full.

Three page-out paths of NVSwap:

❖ Page (1):

❖ Page (2): It is paged out to NVMM.

❖ Page (3) : It is paged out to the regular-zone.

Two paths for serving the page-in request:

❖ If the page is stored in the regular-zone:

❖ If the page is stored in the persistent paging buffer:

Experimental Setup

Hardware

❖ CPU: 6-core Intel Xeon CPU X5670 2.93 GHz CPU

❖ DRAM: 32 GB

❖ Disk:

(1) 1TB hard disk (Seagate Barracuda 7200.12) (host the

operating system)

(2) 128 GB SSD (OCZ-VERTEX 4) (host the regular-zone)

Benchmark

❖Memcached: Free & open source, high-performance,

distributed memory object caching system.

❖ YCSB: an open-source specification and program suite for

evaluating retrieval and maintenance capabilities of

computer programs.

Conclusion

❖ NVSwap provides a cost-effective and hybrid swap space using both NVMM and SSD.

❖ NVSwap allows the setting of Xth percentile page-in latency bound for a single process or a group of processes.

❖ NVSwap can enforce the tail latency while providing strong performance isolation for latency-sensitive processes.

The 99th percentile latency of DB read operations (840 us) is

25X longer than its minimum latency (34 us).

With concurrent accesses to the swap space, the 99th percentile latency of

read operations (2143 us) is 61X higher than its minimum latency (35 us).

In summary, while the paging systems have been well implemented to provide high I/O bandwidth

during paging, they are not latency-sensitive.

Page out Page in

Our Design: NVSwap

Submission ID: 2168

❖ The new disk location of the flushed pages in the regular-zone is recorded in the shadow mapping table.

❖ The page-in requests to access the flushed pages will be served using the new disk addresses in the shadow mapping table.

1. It is paged out to the persistent paging buffer first and

asynchronously flushed to the regular-zone when the buffer

is full.

2. NVSwap copies the page to be swapped out from DRAM to

a new page frame in NVMM.

3. A page-out request can be considered complete once it is

sent to the main memory extension.

1. NVSwap issues a read request to read the page from the

block device to a new DRAM page frame.

2. By updating the page table entry of the process, it sets up

the PTE mapping from the virtual address to the physical

address in DRAM.

1. NVSwap allocates a page frame in the NV-zone.

2. It sets up the PTE mapping from the virtual address to the

physical address in NVMM.

3. It copies the data from the persistent paging buffer to the

NVMM page frame in the NV-zone.

Evaluation

Single Workloads

The 99th percentile latency:

345 us -> 192 us,

below the latency bound 200 us

The minimum latency:

86 us -> 0.081 us

The 99th percentile latency:

826 us -> 214 us

The 99th percentile latency:

840 us -> 219 us

We study the effectiveness of latency control using NVSwap with a single memcached server accessing the

swap space in the experiment. The result shows the effectiveness of NVSwap in enforcing latency bounds.

Concurrent Homogeneous Workloads

Concurrent Heterogeneous Workloads

The 99th percentile latency: 975 us,

below the latency bound 1000 us

The 99th percentile latency: 498us,

below the latency bound 500 us

The 99th percentile latency: 291 us,

below the latency bound 300 us

The 99th percentile latency: 737 us,

below the latency bound 1000 us

The 99th percentile latency: 323 us,

below the latency bound 500 us

The 99th percentile latency: 255 us,

below the latency bound 300 us

Configurations of heterogeneous Workload A, B, C.

Main Memory & NVMM

❖Main Memory: 5 GB

❖ NVMM: 10 GB

Kernel

❖ Kernel version: kernel-3.16.74

We study the effectiveness of NVSwap with three concurrent homogeneous memcached servers accessing

the swap space. The result shows that all workloads meet the latency requirements.

We study the effectiveness of NVSwap with three concurrent heterogeneous memcached servers accessing

the swap space. The result shows that all workloads meet the latency requirements.

