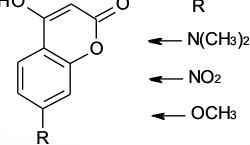
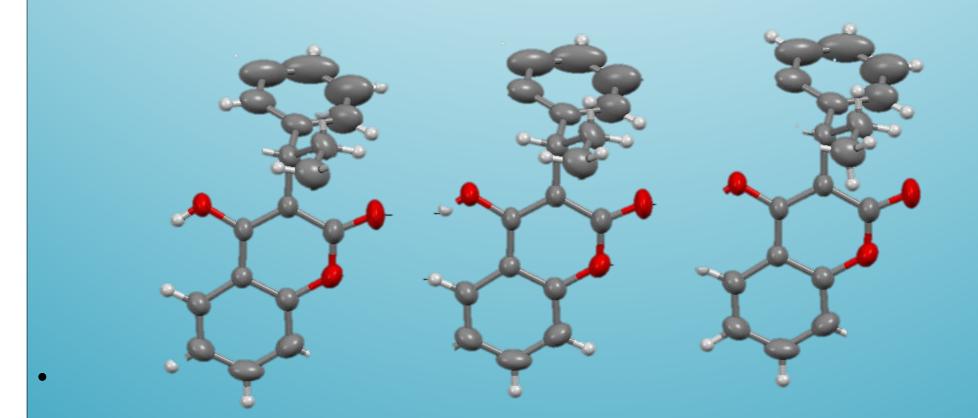

WASHINGTON STATE Aligning 4-Hydroxycoumarins into β -chains, 3-Substituted 7dimetylamino-4-hydroxycoumarins

Elisei Cosovan, Victor Cosovan, Edward J. Valente Washington State University College of Arts and Science Department of Chemistry

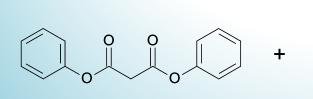

INTRODUCTION

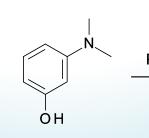
• The tautomeric properties of 4-hydroxycoumarin allow for it to react as an oxygen or a carbon nucleophile, and its chemistry is largely defined by these

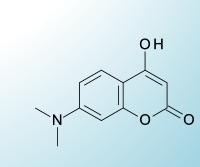

options

• Prepare 7-substituted derivatives of 4-hydroxycoumrin and to explore several literature methods of 3-substitution. The derivatives chosen are dimethylamino, nitro and methoxy as these are poor Hydrogen-bond donors or acceptors.

Hydrogen-bonded assemblies allows for adjacent alignment of the β-enolones forming a 717 pm repeat unit in the crystalline environment. Such an arrangement is disturbed by Hydrogen-bonding donors and acceptors substituted at the 3-position. Non-polar 3-substituents apparently accommodate this Hydrogen-bonding scheme. Because of the alignment, it seems possible 7-substituents may be accommodated, again, if they are not Hydrogen-bond competitors. This area of chemistry has not been explored.

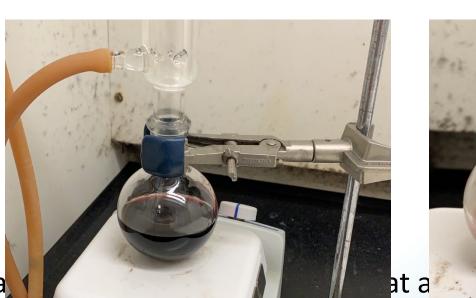



Hypothesis


Inspection of the phenprocoumon system shows that substitution at the 7position may not introduce bulky elements which might otherwise disrupt the formation of the β-chains. Other possibilities might be 7-methoxy or 7-nitro groups.

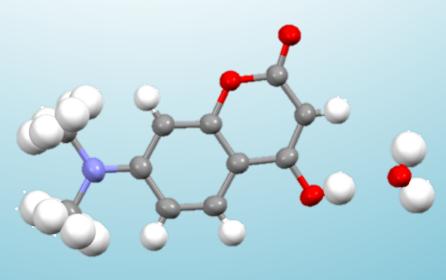
Making 7-dimethylamino-4-hydroxycoumarin

Of the several literature methods, the most direct is to form this compound from diphenyl malonate and 3-dimethylaminophenol with POCI3.



PREPARATION OF 7-DIMETHYLAMINO-4-HYDROXYCOUMARIN:

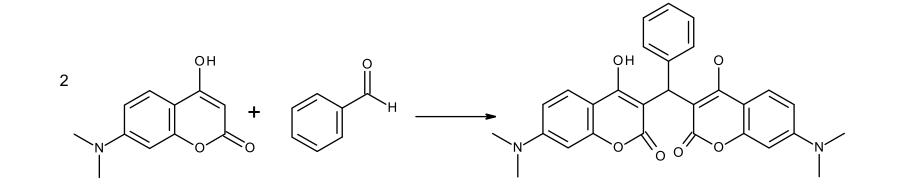
Gray precipitate formed 1.647 g, 73.7%. produced TLC on product indicated that the product is a relatively polar compound with the illumina



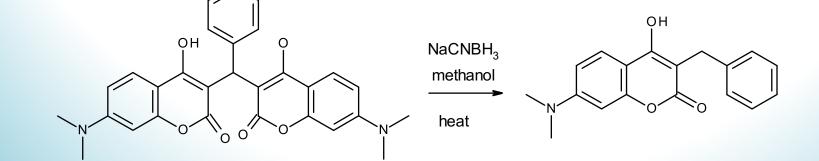
Compound identity was confirmed by proton and carbonNMR. It forms deep green crystals from dimethylsulfoxide solution., and occurs as a hydrate. The structure was determined.

CELL IS MONOCLINIC, SPACE

GROUP P2(1)/c.



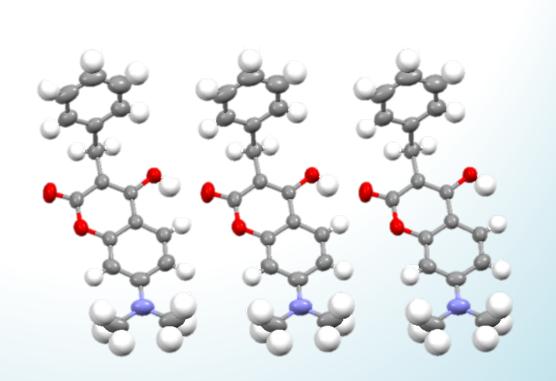
Attempts to substitute at 3-position:


Reaction with 1-phenyl-1-propanol was pursued by several preciously reported

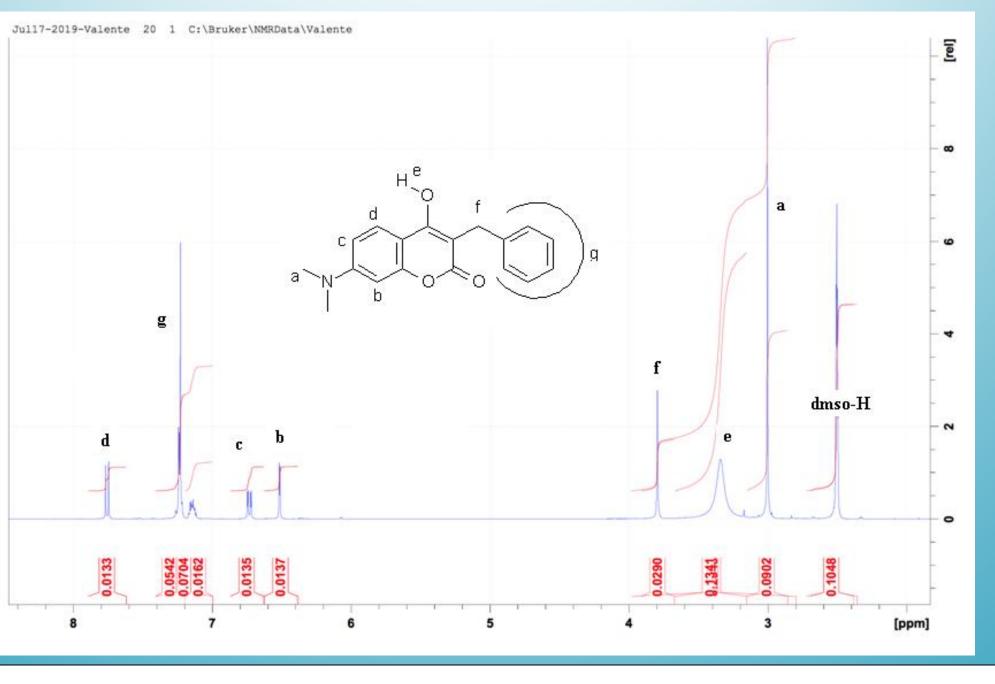
useful methods. Failures No Reacton CH3NO2 In each case, only **unreacted** starting No Reacton CH₃NO₂ materials were FeCl₃.6H₂O recovered. No Reacton CH₂Cl₂

Condensation with benzaldehyde: Benzaldehyde is known to react with 4-hydroxycoumarins to form very insoluble (substituted) dicoumarols. There are many examples.

Reaction of 7-dimethylamino-4-hydroxycoumarin with benzaldehyde gave the dicoumarol as a very insoluble yellow solid. A method is known to reductively cleave dicoumarols to 3-substituted 4-hydroxycoumarins.


In this way, 3-benzyl-4-hydroxycoumarin was prepared as a colorless solid. Its **crystal structure shows** β-chain formation.

STRUCTURE OF 3-BENZYL-7-DIMETHYLAMINO-4-


HYDROXYCOUMARIN

SPACE GROUP P-1

NMR SPECTROSCOPY

CONCLUSION

Phenprocoumon

- 7-Dimethylamino-4-hydroxycoumarin was prepared in pure form and characterized by proton and carbon NMR, and the structure of its hydrate was determined.
- Nucleophilic addition of this substance to 1-phenyl-1-propanol was not an effective method to substitute the coumarin ring on the 3-position Using a route through the dicoumarol was successful in making 3-benzyl-7-
- dimethylamino-4-hydroxycoumarin
- The benzyl substituted analog did produce well-aligned β -chains
- These results suggest that acidic conditions may inhibit desired reaction to the 7-dimethylamino phenprocoumon.
- Other methods may yet prove effective in taking advantage of the nucleophilic properties of 7-dimethyamino-4-hydroxycoumarin.

REFERENCES – ACKNOWLEDGMENTS

- Gilli, G. Bertolasi, V Feretti V and Gilli P (1993). Resonance Assisted Hydrogen Bond. III. Formation of Intermolecular Hydrogen-Bonded Chains in Crystals of β-Diketones and its Relevance to Molecular Association. Acta Crystallographica B49, 564 - 576. Bravic G, Gaultier J, Hauw C (1971). Structure cristalline et moleculaire du marcoumar. Comptes Rendus Academy Sciences Paris C272, 1112 - 1114.
- Schroeder CH, Titus ED, Link, KP (1957) A New Synthetic Approach to Some 3-Aralkyl-4-hydroxycoumarins. Journal of the American Chemical Society 79, 3291 - 3294.
- A General and Efficient Iron-Catalyzed Benzylation of 1,3-Dicarbonyl Compounds. Jette Kischel, Kristin Mertins, Dirk Michalik, Alexander Zapf, and Matthias Bellera, Adv. Synth. Catal. 2007, 349, 865 – 870. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Moaz M. Abdou, Rasha A. El-Saeed, Samir
- Bondock. Arabian Journal of Chemistry (2019) 12, 88–121 Reaction of Cyclohexanone Benzylimines with Ethylidenemalonate Diesters. Diphenyl 2-Ethylidenemalonate: A Highly Electrophilic Synthetic Equivalent of Crotonic Esters. Ivan Jabin, Gilbert Revial, Nicolas Monnier-Benoit, and Pierre Netchitai. J.
- Org. Chem. 2001, 66, 256-261. Spectral Properties of Substituted Coumarins in Solution and Polymer Matrices, Jana Donovalová, Marek Cigán, Henrieta
- Stankovicová, Jan Gašpar, Martin Danko, Anton Gáplovský and Pavol Hrdlovic Molecules 2012, 17, 3259-3276; doi:10.3390/molecules17033259.
- The chemistry of coumarin derivatives (part 3) Synthesis of 3-alkyl-4-hydroxycoumareins by reductive fragmentation of 3,3'alkylidene-4,4'-dihydroxybis(coumarins) Appendino G., Cravotto, G., Tafliapietra, S., Ferraro, S., Nano, G. N. Helv. Chim. Acta. 74 (1991) 1451-1458.
- Structure, reactivity, and application of some triketone derivatives. You-Sheng Chen, Pei-Yu Kuo, Tien-Lan Shie, Ding-Yah Yang Tetrahedron 62 (2006) 9410–9416.